Shmei seic sto mˆjhma Analutik GewmetrÐa

Σχετικά έγγραφα
PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN TMHMA POLITIKWN MHQANIKWN ANWTERA MAJHMATIKA II DIAFORIKES EXISWSEIS DEUTERHS KAI ANWTERHS TAXHS

Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι

Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ

SUNARTHSEIS POLLWN METABLHTWN. 5h Seirˆ Ask sewn. Allag metablht n sto diplì olokl rwma

Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ

PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN TMHMA POLITIKWN MHQANIKWN ANWTERA MAJHMATIKA II DIAFORIKES EXISWSEIS.

PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN TMHMA POLITIKWN MHQANIKWN ANWTERA MAJHMATIKA II DIAFORIKES EXISWSEIS.

PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN TMHMA POLITIKWN MHQANIKWN ANWTERA MAJHMATIKA II SUNARTHSEIS POLLWN METABLHTWN.

9. α 2 + β 2 ±2αβ. 10. α 2 ± αβ + β (1 + α) ν > 1+να, 1 <α 0, ν 2. log α. 14. log α x = ln x. 19. x 1 <x 2 ln x 1 < ln x 2

Shmei seic sto mˆjhma Analutik GewmetrÐa

25 OktwbrÐou 2012 (5 h ebdomˆda) S. Malefˆkh Genikì Tm ma Majhmatikˆ gia QhmikoÔc

6h Seirˆ Ask sewn. EpikampÔlia oloklhr mata

Εφαρμοσμένα Μαθηματικά για Μηχανικούς

Εφαρμοσμένα Μαθηματικά για Μηχανικούς

Εφαρμοσμένα Μαθηματικά για Μηχανικούς

Pragmatik Anˆlush ( ) TopologÐa metrik n q rwn Ask seic

AM = 1 ( ) AB + AΓ BΓ+ AE = AΔ+ BE. + γ =2 β + γ β + γ tìte α// β. OΓ+ OA + OB MA+ MB + M Γ+ MΔ =4 MO. OM =(1 λ) OA + λ OB

GENIKEUMENA OLOKLHRWMATA

Jerinì SqoleÐo Fusik c sthn EkpaÐdeush 28 IounÐou - 1 IoulÐou 2010 EstÐa Episthm n Pˆtrac

SofÐa ZafeirÐdou: GewmetrÐec

Diˆsthma empistosônhc thc mèshc tim c µ. Statistik gia Hlektrolìgouc MhqanikoÔc EKTIMHSH EKTIMHSH PARAMETRWN - 2. Dhm trhc Kougioumtz c.

Diakritˆ Majhmatikˆ I. Leutèrhc KuroÔshc (EÔh Papaðwˆnnou)

1 η Σειρά Ασκήσεων Θεόδωρος Αλεξόπουλος. Αναγνώριση Προτύπων και Νευρωνικά Δίκτυα

Anaplhrwt c Kajhght c : Dr. Pappˆc G. Alèxandroc PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN TMHMA POLITIKWN MHQANIKWN ANWTERA MAJHMATIKA I

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Μηχανική Μάθηση. Ενότητα 10: Θεωρία Βελτιστοποίησης. Ιωάννης Τσαμαρδίνος Τμήμα Επιστήμης Υπολογιστών

PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN TMHMA POLITIKWN MHQANIKWN ANWTERA MAJHMATIKA II SUNARTHSEIS POLLWN METABLHTWN EPIKAMPULIA OLOKLHRWMATA

11 OktwbrÐou S. Malefˆkh Genikì Tm ma Majhmatikˆ gia QhmikoÔc

PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN. Ask seic kai Jèmata sthn Pragmatik Anˆlush I TMHMA POLITIKWN MHQANIKWN

5. (12 i)(3+4i) 6. (1 + i)(2+i) 7. (4 + 6i)(7 3i) 8. (1 i)(2 i)(3 i)

Ανάλυση ις. συστήματα

Statistik gia PolitikoÔc MhqanikoÔc EKTIMHSH PAR

Anagn rish ProtÔpwn & Neurwnikˆ DÐktua Probl mata 2

Θεωρία Πιθανοτήτων και Στατιστική

JEMATA EXETASEWN Pragmatik Anˆlush I


Ask seic me ton Metasqhmatismì Laplace

Eisagwg sthn KosmologÐa

Statistik gia QhmikoÔc MhqanikoÔc EKTIMHSH PARA

Στατιστική για Χημικούς Μηχανικούς

Mègisth ro - elˆqisth tom

ISTORIKH KATASKEUH PRAGMATIKWN ARIJMWN BIBLIOGRAFIA

στο Αριστοτέλειο υλικού.

Eukleideiec Gewmetriec

Ανάλυση ασκήσεις. συστήματα

2+sin^2(x+2)+cos^2(x+2) Δ ν =[1 1 2 ν 1, ν ) ( ( π (x α) ημ β α π ) ) +1 + a 2

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΤΩΝ ΥΛΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗ ΙΙ Εξετάσεις Ιουνίου 2002

στο Αριστοτέλειο υλικού.

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

Κλασσική Ηλεκτροδυναμική II

Anaz thsh eustaj n troqi n se triplˆ sust mata swmˆtwn

SUNOLA BIRKHOFF JAMES ϵ ORJOGWNIOTHTAS KAI ARIJMHTIKA PEDIA

Hmiomˆdec telest n sônjeshc kai pðnakec Hausdorff se q rouc analutik n sunart sewn

ΜΑΘΗΜΑΤΙΚΑ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

Farkas. αx+(1 α)y C. λx+(1 λ)y i I A i. λ 1,...,λ m 0 me λ 1 + +λ m = m. i=1 λ i = 1. i=1 λ ia i A. j=1 λ ja j A. An µ := λ λ k = 0 a λ k

Ergasthriak 'Askhsh 2

Shmei seic Sunarthsiak c Anˆlushc

f(x) =x x 2 = x x 2 x =0 x(x 1) = 0,

HU215 - Frontist rio : Seirèc Fourier

Upologistik Fusik Exetastik PerÐodoc IanouarÐou 2013

Εφαρμοσμένα Μαθηματικά για Μηχανικούς


thlèfwno: , H YHFIAKH TAXH A' GumnasÐou Miqˆlhc TzoÔmac Sq. Sumb. kl.

Ανάλυση. σήματα και συστήματα

Statistik gia PolitikoÔc MhqanikoÔc ELEGQOS UPOJ

ΜΑΘΗΜΑ 2, Έλεγχος ροής προγράμματος ΒΑΣΙΚΗ ΣΥΝΤΑΞΗ:

APEIROSTIKOS LOGISMOS I

Ανάλυση ΙΙ Σεπτέµβριος 2012 (Λύσεις)

Στατιστική για Χημικούς Μηχανικούς

t t j=1 span(x) = { 1-1

N.Σ. Μαυρογιάννης 2010

KBANTOMHQANIKH II (Tm ma A. Laqanˆ) 28 AugoÔstou m Upìdeixh: Na qrhsimopoihjeð to je rhma virial 2 T = r V.

Θεωρία Πιθανοτήτων και Στατιστική

Upologistikˆ Zht mata se Sumbibastikèc YhfoforÐec

Φυλλο 3, 9 Απριλιου Ροδόλφος Μπόρης

Statistik gia QhmikoÔc MhqanikoÔc EKTIMHSH PARA

1, 3, 5, 7, 9,... 2, 4, 6, 8, 10,... 1, 4, 7, 10, 13,... 2, 5, 8, 11, 14,... 3, 6, 9, 12, 15,...

10/2013. Mod: 02D-EK/BT. Production code: CTT920BE

spin triplet S =1,M S =0 = ( + ) 2 S =1,M S = 1 = spin singlet S =0,M S =0 = ( )

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

ΜΕΤΑΒΟΛΙΚΕΣ ΑΝΙΣΟΤΗΤΕΣ ΚΑΙ ΠΡΟΒΛΗΜΑΤΑ ΕΛΕΥΘΕΡΩΝ ΣΥΝΟΡΩΝ ΣΤΗ ΜΑΘΗΜΑΤΙΚΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΑ ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΝΙΠΥΡΑΚΗ ΜΑΡΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

MELETH TWN RIZWN TWN ASSOCIATED ORJOGWNIWN

SofÐa ZafeirÐdou. Analutik GewmetrÐa. Tm ma Majhmatik n Panepist mio Patr n. Bohjhtikèc Shmei seic gia to mˆjhma. SofÐa ZafeirÐdou

Didaktorikèc spoudèc stic HPA, sta Majhmatikˆ. 20 MartÐou 2015

EISAGWGH STON PROGRAMMATISMO ( ) 'Askhsh 2

Ergasthriak 'Askhsh 3

Σήματα Συστήματα Ανάλυση Fourier για σήματα και συστήματα συνεχούς χρόνου Περιοδικά Σήματα (Σειρά Fourier)

L mma thc 'Antlhshc. A. K. Kapìrhc

Σχήμα 1.1: Διάφορες ισόχρονες καμπύλες με διαφορετικές μεταλλικότητες Ζ, και περιεκτικότητα σε ήλιο Υ.

GENIKA MAJHMATIKA. TEI SERRWN SQOLH DIOIKHSHS KAI OIKONOMIAS Tm ma Logistik c

+#!, - ),,) " ) (!! + Henri Poincar e./ ', / $, 050.

Apeirostikìc Logismìc. Pragmatikèc Sunart seic Miac Pragmatik c Metablht c

Tm ma Fusik c Mˆjhma: Pijanìthtec -Sfˆlmata-Statistik PerÐodoc: Febrouˆrioc 2008

Σχόλια για το Μάθημα. Λουκάς Βλάχος

B ν = 2kT. I ν = 2kT b. Te tν/μ dt ν /μ (59) T b T (1 e τν ) (60) T b τ ν T (61)

Ασκήσεις Γενικά Μαθηµατικά Ι Λύσεις ασκήσεων Οµάδας

KATASTATIKO 3. XRHSIMOPOIHSH TVN OIKONOMIKVN MESVN, KOINH VFELEIA

EUSTAJEIA DUNAMIKWN SUSTHMATWN 1 Eisagwg O skop c tou par ntoc kefala ou e nai na parousi sei th basik jewr a gia th mel th thc eust jeiac en c mh gra

2

ENA TAXIDI STH SUNOQH. g ab T a bc. R i jkl

G. A. Cohen ** stìqo thn kubernhtik nomojesða kai politik, den upˆrqei tðpota to qarakthristikì sth morf thc.)

Transcript:

Shmei seic sto mˆjhma Analutik GewmetrÐa Didˆskwn: Lˆppac D. Ejnikì Kapodistriakì Panepist mio Ajhn n

B' MEROS

3 EPIFANEIES sto QWRO Epifˆneia gia thn perigraf thc qreiˆzontai dôo parˆmetroi mia eidik epifˆneia EpÐpedo HremoÔn ugrì Efarmog eujeðac (t, s) x 0 + t w + s u = x (PARAMETRIKH E- XISWSH) epðpedo pou dièrqetai apì èna shmeðo to x 0 kai eðnai kˆjeto sto ( w u). ( w u) grammikˆ anexˆrthto. < AM, l = 0 (E) : Ax + Bψ + Γz + = 0 (ANALUTIKH E- XISWSH) EpÐpedo kˆjeto sto l = (A, B, Γ). x x 0 = R prokôptei me thn peristrof thc hmiperifèreiac. Perigraf thc epifˆneiac thc SfaÐrac me dôo paramètrouc SfaÐra (x, ψ) + R x ψ (giatð x + ψ 1 = 0, x = ± 1 x ψ ) (x, ψ, R x ψ ) EmpÐptei ston ORISMO tmhmatikˆ Polikèc suntetagmènec dôo parˆmetroi x + ψ + z = 1 (POLUWNUMIKH ou BAJMOU TRIWN ME- TABLHTWN) KWNIKES EPIFANEIES (C): kôkloc K: ShmeÐo tou q rou (ektìc epipèdou tou kôklou) AK: eujeða (GENETEIRA) Af noume to A na trèqei ston kôklo tìte h (KA) parˆgei mða epifˆneia (S) S: k noc me koruf to K kai odhgì thn kampôlh (C) oi eujeðec eðnai olìklhrec K(x 0, ψ 0, z 0 ) A (C) ìpou A(x 1, ψ 1, z 1 ) (C)

4 (C) f 1 (x, ψ, z) = 0 f (x, ψ, z) = 0 TOMH EPIFANEIWN (SFAIRA-EPIPEDO) P : TUQAIO SHMEIO thc EPIFANEIAS (S) (S) P (x, ψ, z) (S) = P A (C) : P, K, A SUNEUJEIAKA} P, K, A suneujeiakˆ KP = t KA, t R KP = (x x 0, ψ ψ 0, z z 0 ) t KA = (x 1 x 0, ψ 1 ψ 0, z 1 z 0 ) x x 0 = t(x 1 x 0 ) ψ ψ 0 = t(ψ 1 ψ 0 ) (S) z z 0 = t(z 1 z 0 ) f 1 (x 1, ψ 1, z 1 ) = 0 f (x, ψ, z ) = 0 AnazhtoÔme sqèsh anˆmesa sta x, ψ, z (Prèpei na apaleifjoôn ta t, x 1, ψ 1, z 1 ) PARADEIGMA K(1, 3, ) 3x + ψ = 1 (C) z = 0 èlleiyh sto epðpedo xoψ. ZhteÐtai h kwnik epifˆneia me koruf K kai odhgì kampôlhc (C) 'Estw P (x, ψ, z) shmeðo thc epifˆneiac (S). Tìte A(x 1, ψ 1, z 1 ) (C) ste KP = t KA, t R. x 1 = t(x 1 1) ψ + 3 = t(ψ 1 + 3) z = t(z 1 ) } 3x 1 + ψ1 = 1 z 1 = 0 Epeid z 1 = 0 tìte z = t( ) t = z x 1 = z (x 1 1) x 1 = ψ + 3 = z (ψ 1 + 3) ψ 1 = 1 h PERIPTWSH

5 z 0 x 1 1 = ψ + 3 = (x 1) z (ψ + 3) z x 1 = ψ 1 = Apì thn antikatˆstash sthn 3x 1 + ψ 1 = 1 prokôptei h PERIPTWSH 3 [ (x 1) + ( z) z (x 1) + ( z) z (ψ + 3) 3( z) z ] [(ψ + 3) 3( z) ] + + 1 = 0 z (S) : 3[(x 1) + ( z)] + [(ψ + 3) 3( z)] = ( z) z = 0 z = prokôptei to K(1, 3, ) (S). MAJHMATIKH MELETH An kˆnoume prˆxeic ja prokôyei exðswsh thc morf c: αx + βψ + γz + δxψ + εψz + ζxz + (κx + λψ + µz) + ν = 0 ExÐswsh poluwnumik, ou bajmoô, tri n metablht n. Jètw X = x 1, Ψ = (ψ + 3), Z = z (dhlad arq to K). Tìte h exðswsh thc S paðrnei th morf : 3[X Z] + [Ψ + 3Z] = Z ExÐswsh thc S sto K, XΨZ}. H exðswsh thc S sto K, XΨZ} eðnai OMOGENHS ou BAJMOU. F (X, Ψ, Z)(= 0) x λx OMOGENHS: ψ λψ Z λz F (λx, λψ, λz) = λ F (X, Ψ, Z) (X, Ψ, Z) (λx, λψ, λz) eðnai kai pˆli shmeða thc epifˆneiac. SUMPERASMA: An mða kwnik epifˆneia grˆfei se sôsthma anaforˆc me arq thn koruf tìte eðnai OMOGENHS EXISWSH. Mia exðswsh ou bajmoô perigrˆfei k no eˆn me katˆllhlh metaforˆ eðnai OMOGENHS f(x, ψ, z) x x + x 0 ψ ψ + ψ 0 z z + z 0?(x 0, ψ 0, z 0 ) : f(x, ψ, z ) OMOGENHS. APLOUSTERES MORFES KWNWN x + ψ + z = 0 to kèntro.

6 x + ψ z = 0 x ψ z = 0 x + ψ + z = 0 αx + βψ + γz = 0 K(0, 0, 0) (C) : z = 1 x + ψ = 1 k noc me koruf to K kai odhgì thn kampôlh (C) ProkÔptei z 1 = 1 z = t x = zx 1 x 1 = x z ψ = zψ 1 ψ 1 = ψ z KP = t KA x = tx 1 ψ = tψ 1 z = tz 1 x + ψ = 1 z 1 = 1 (S) : x + ψ z = 0 KWNIKES TOMES TOMH KWNOU kai EPIPEDOU x + ψ z = 0 : (S) αx + βψ + γz + δ = 0 : (Π) (S) (Π) : z = 1 x + ψ = 1 KUKLOS

(Kwnik epifˆneia) Kèntro(K) odhgìc kampôlhc(c) } 7 (S) = p A (C) : KP = t KA, t R} An jewr sw sôsthma me arq to K, tìte h exðswsh thc S sto nèo sôsthma eðnai OMOGENHS ou BAJMOU. POTE MIA EXISWSH B' BAJMOU sto QWRO eðnai KWNIKH EPIFANEIA g(x, ψ, z) = 0 anazht (x 0, ψ 0, z 0 ) x x + x 0 ψ ψ + ψ 0 z z + z 0 g(x + x 0, ψ + ψ 0, z + z 0 ) OMOGENHS wc proc x, ψ, z. An isqôei tìte (x 0, ψ 0, z 0 ) KENTRO tou nèou sust matoc. PARADEIGMA 1 Na exetasteð an paristˆnei kwnik epifˆneia Prosjètoume katˆ mèlh b' bˆjmio x 4ψ z + 4ψz + 4z 4 = 0 x = x + x 0 + x x 0 4ψ = 4ψ 4ψ 0 8ψ ψ 0 z = z z 0 4z z 0 4ψz = 4ψ z + 4ψ 0 z 0 + 4ψ z 0 + 4z ψ 0 4z = 4z + 4z 0 x 4ψ z + 4ψ z + x x }} 0 + ψ ( 8ψ 0 + 4z 0 ) + z (4ψ 0 4z 0 + 4) }} EÐnai omogenèc (Σ): sumbibastì a' bˆjmio + x 0 4ψ 0 z 0 + 4ψ 0 z 0 + 4z 0 4 }} stajeroð ìroi (1) x 0 = 0 () 8ψ 0 + 4z 0 = 0 (Σ) (3) 4ψ 0 4z 0 + 4 = 0 (4) x 0 4ψ0 z0 + 4z 0 ψ 0 + 4z 0 4 = 0 Prèpei to (Σ) na eðnai sumbibastì x 0 = 0 ψ 0 = 1 z 0 = epalhjeôoun thn (4) = 0 suntelestèc prwtobˆjmiwn stajerìc

8 Tìte prokôptei h exðswsh: x 6 4ψ z + 4ψ z = 0 OMOGENHS K(0, 1, ) Br kame to kèntro K(0, 1, ). AnazhtoÔme thn odhgì kampôlh ProkÔptei me tom thc epifˆneiac kai enìc epipèdou. jewroôme to epipèdo z = 0 x 4ψ = 4 x 4ψ = 4 (C) : uperbol sto xoψ. z = 0 z = 0 K(0, 1, ) Koruf 'Ara o k noc eðnai (C) odhgìc kampôlh PARADEIGMA JewroÔme to shmeðo K(1, 1, 1) kai thn eujeða x 1 1 tou q rou me thn idiìthta: = ψ 1 1 = z 1 1 (ε) kai ìla ta shmeða M ( KM, (ε) = STAJERH = π 4. Na exetasteð eˆn ta M sqhmatðzoun stajer epifˆneia. Jewr to diˆnusma w(1, 1, 1) (ε). ( KM, w) = π 4 cos( KM, w) = cos( KM, w) = < KM, w > KM w = < (x 1, ψ 1, z 1), (1, 1, 1) > (x 1) + (ψ 1) + (z 1) 1 + 1 + 1 = = [(x 1) + (ψ 1) + (z 1)] [(x 1) + (ψ 1) + (z 1) ] 3 = 1 paristˆnei k no me koruf K(1, 1, 1). Jètoume x 1 = X ψ 1 = Ψ z 1 = Z Tìte h exðswsh gðnetai: (X + Ψ + Z) = 3(X + Ψ + Z ). F (X, Ψ, Z) = 0 F (X, Ψ, Z) = 3(X + Ψ + Z ) (X + Ψ + Z) X +Ψ +Z 4XΨ 4XZ 4ΨZ = 0 OMOGENHS b' BAJMOU orjìc kuklikìc k noc φ : gwnða thc genèteirac me ton ˆxona φ : gwnða tou k nou

9 KULINDRIKES EPIFANEIES odhgìc kampôlh (C). genèteira: kineðtai pˆnw sthn odhgì kampôlh paramènontac parˆllhlh se miˆ stajer dieôjunsh (δ) u dieôjunsh (S) = p A (G) : 'Estw P (x, ψ, z), A 1 (x 1, ψ 1, z 1 ) C, C AP u AP = t u t R ProkÔptei to SUSTHMA (C) : kampôlh AP u} KULINDRIKH EPIFANEIA x x 1 = tα ψ ψ 1 = tβ z z 1 = tγ f 1 (x, ψ, z) = 0 f (x, ψ, z) = 0 f 1 (x ψ, z) f (x, ψ, z) Apaloif twn t, x 1, ψ 1, z 1. f 1 (x 1, ψ 1, z 1 ) = 0 f (x, ψ, z ) = 0 Me thn apaloif twn t, x 1, ψ 1, z 1 prokôptei F (x, ψ, z) = 0 h exðswsh epifˆneiac. PARADEIGMA: ORJOS PARABOLIKOS KULINDROS ψ = px (C) : PARABOLH sto Oxψ z = 0 u(0, 0, 1) sto Oxψ A(x 1, ψ 1, z 1 ) C S = p A (G) : AP u, AP = t u} ìpou P (x, ψ, z) tuqaðo shmeðo. H epifˆneia (S) pou ja prokôyei eðnai ORJOS PARABOLIKOS KULINDROS. x x 1 = 0t ψ ψ 1 = 0t z z 1 = 1t } ψ1 = px 1 z 1 = 0 x x 1 = 0 ψ ψ 1 = 0 AfoÔ z 1 = 0 z = t tìte: ψ = px z R Sqìlio H exðswsh ψ = px sto q ro eðnai KULINDROS. H exðswsh pou prokôptei eðnai b' bajmoô MH OMOGENHS.

10 PARADEIGMA: PARABOLIKOS KULINDROS ψ = px C = PARABOLH sto Oxψ z = 0 w = (1,, 3) A(x 1, ψ 1, z 1 ) C x x 1 = t ψ ψ 1 = t z z 1 = 3t ψ 1 = px 1 z 1 = 0 z = 3t t = z 3 Tìte x 1 = x z 3 ψ 1 = ψ z 3 Jètoume ta x 1, ψ 1 sthn ψ 1 = px 1 kai prokôptei (ψ z 3 ) = p(x z 3 ) 3(ψ z 3 ) = 6p(3x z) p = 1 6 (E) : 9ψ + 4z 1ψz 3x + z = 0 An exetˆsoume thn (E) wc proc thn OMOGENEIA prokôptei ìti KENTRO. SFARIKOS KULINDROS ASKHSH: JewroÔme th sfaðra x + ψ + z = 1 kai to mègisto kôklo pou prokôptei wc tom thc (S) kai tou epipèdou x + ψ + z = 0. ZhteÐtai h orj kulindrik epifˆneia me odhgì kampôlh thn (C) Gia sfaðra (S) kai kampôlh (C) ìpwc prin zhteðtai o G.T. twn efaptomènwn sth sfaðra kai sthn kampôlh P (x, ψ, z) : shmeðo thc epifˆneiac A(x 1, psi 1, z 1 ): shmeðo thc (C) u(1, 1, 1) sto epðpedo thc (C). x x 1 = t 1 (1) ψ ψ 1 = t () z z 1 = t (3) x 1 + ψ 1 + z 1 = 0 (4) x 1 + ψ1 + z1 = 1 (5)

11 t 0 tìte x x 1 t = ψ ψ 1 t = z z 1 t opìte t = x + ψ + z 3 ψ z + x (1) x 1 =, () ψ 1 = 3 AntikajistoÔme ta x 1, ψ 1, z 1 sthn (5) = x + ψ + z (x 1 + ψ 1 + z 1 ) 0 3t x + ψ z, (3) z 1 = 3 x ψ + z 3 (ψ+z x) +(x ψ+z) +(x+ψ z) = 9 KULINDROS pou efˆptetai sth sfaðra. ja tan OMOGENHS. An eðqe sto deôtero mèloc 0 ja tan k noc giatð ELLEIPTIKOS KULINDROS ASKHSH: Na brejeð h exðswsh tou elleiptikoô kulðndrou me odhgì thn kampôlh (C) : 3x + ψ 1 = 0, z = 0 kai dieôjunsh orismènh apì to u = (1, 3, ) 3x + ψ = 1 (C) : ELLEIYH sto Oxψ: ODHGOS KAMPULH z = 0 u(1, 3, ): STAJERH DIEUJUNSH A(x 1, ψ 1, z 1 ) C P (x, ψ, z) tuqaðo shmeðo thc epifˆneiac S = p A (G) : AP u} AP u dhlad AP = t u. AP = (x x 1, ψ ψ 1, z z 1 ) x x 1 = 1 t ψ ψ 1 = 3t z z 1 = t 3x 1 + ψ 1 = 1 z 1 = 0 ProkÔptei ìti z 1 = 0 z = t t = z. Tìte x 1 = x z, ψ 1 = sthn 3x 1 + ψ1 = 1 kai prokôptei ψ + 3z. AntikajistoÔme 3( x z ) ψ + 3z + ( ) = 1 3(x z) + (ψ + 3z) 4 = 0 'Ara (S) : 3(x z) + (ψ + 3z) 4 = 0 exðswsh elleiptikoô kulðndrou.

1 EPIFANEIES EK PERISTROFHS Dedomèna: C: KAMPULH ξ: EUJEIA pou leitourgei wc ˆxonac me peristrof thc (C) gôrw apì thn ξ parˆgetai mia epifˆneia (S). Kˆje shmeðo thc epifˆneiac brðsketai pˆnw se èna KUKLO. Autìc lègetai KUKLOS ANAFORAS kai èqei akrib c èna koinì shmeðo A me thn kampôlh MAJHMATIKH PERIGRAFH (S) : P!(K (ξ) kai A (C))} ( (KAP ) (ξ) KA = KP ξ: exðswsh eujeðac (C): exðswsh tom epifanei n (Σ): sunj kec: K (ξ) kai A (C). KWNOS (DIQWNO) to epðpedo tou kôklou eðnai kˆjeto ston ˆxona ξ kai ton tèmnei se èna shmeðo K: kèntro tou kôklou. Dhlad (KAP )(epðpedo) ξ PARADEIGMA: Na upologisteð h epifˆneia pou prokôptei apì peristrof thc (C) gôrw apì ton ˆxona x x ìpou x x = (x, 0, 0) x R. M (Σ) M(x, ψ, z) A (C), A(x 1, ψ 1, z 1 ) kai K ξ, K(x 0, 0, 0) x 1 ψ 1 = 0 z 1 = 0 (KAM) epðpedo (ξ) x = x 0 = x 1 KA = KM (Σ) k noc sto q ro (x 1 x 0 ) + ψ1 + z1 0 = (x x 0 ) + (ψ ψ 0 ) + (z z 0 ) x 1 =x ψ1 = (ψ ψ 0 ) + (z z 0 ) ψ 0=0, z 0 =0 = ψ1 = ψ + z ψ 1=x x ψ = 0 z = 0 }

13 x = ψ + z x = ψ + z } x = ψ + z x + ψ + z = 0 KWNOS H koruf den eðnai omalì shmeðo. PARADEIGMA: ELLEIYOEIDES ek PERISTROFHS (C) x α + ψ β = 1 z = 0 (ξ) x = z = 0 ˆxonac ψ ψ M(x, ψ, z) A(x 1, ψ 1, z 1 ) x 1 α + ψ 1 β = 1, z 1 = 0 K(0, ψ 0, 0) KM = KA x + (ψ ψ 0 ) + z = x 1 + (ψ 1 ψ 0 ) + z 1 (1) (KAM) epðpedo (ξ) ψ 1 = ψ = ψ 0 Kˆnoume apaloif twn x 0, x 1, ψ 1, z 1 x 1 α + ψ 1 β = 1 ψ 1=ψ = x 1 α + ψ β = 1 (1) x + z = z 1 x + z = x 1 α α = 1 ψ β x α + ψ β + z α = 1 An α = β = R (KUKLOS) x + ψ + z = R sfaðra ek peristrof c. ShmeÐwsh x α + ψ β + z = 1. ParathroÔme ìti oi paranomastèc tou pr tou kai trðtou klˆsmatoc α eðnai ìmoioi kai sunep c prìkeitai gia epifˆneia ek peristrof c. α + ψ β + z = 1 γ oi paranomastèc tou pr tou kai trðtou klˆsmatoc den eðnai ìmoioi kai sunep c h epifˆneia den einai ek peristrof c. An x UPERBOLOEIDH EK PERISTROFHS (α) KampÔlh (C) ψ b z α = 1 x = 0 (β) ˆxonac peristrof c: O ˆxonac z z KA = KM

14 x 1 = 0 ψ1 b z α = 1 x + ψ = ψ 1 x + ψ b = ψ 1 b K(0, 0, z 0 ) (KAM) z z z 0 = z 1 = z to A èqei x 1 = 0 giatð A (C) A(0, ψ 1, z 1 ) = 1 + z α ProkÔptei: x + ψ b z α = 1 MONOQWNO UPERBOLOEIDES SHMEIWSH: x + ψ z = 1 DEN eðnai ek peristrof c 3 x ψ z = 1 DEN eðnai MONOQWNO. PARADEIGMA: MH SUNEKTIKO UPERBOLOEIDES/DIQWNO ψ C b z c = 1 UPERBOLH sto ψoz x = 0 ˆxonac peristrof c ψ ψ A(x 1, ψ 1, z 1 ) K(0, ψ 0, 0) P (x, ψ, z) ψ = ψ 0 = ψ 1 x + z c + ψ b = 1 x c z c + ψ b = 1 PARABOLOEIDH ek PERISTROFHS KAMPULH: ψ = α cz, x = 0 PARABOLH ston ψoz AXONAS: z z Peristrèfoume th C gôrw apì ton z z ˆxona. IsqÔei (KAP ) z z, KA = KP A(x 1, ψ 1, z 1 ) K(0, 0, z 0 ) P (x, ψ, z) KP = x + ψ KA = ψ 1 ψ 1 = (α c)z x +ψ (α c)z = 0, ìpou z prwtobˆjmioc ìroc.

15 EPIFANEIES EK PERISTROFHS KWNOI: αx + βψ + γz = 0 ELLEIYOEIDH: x α ± ψ β ± z β = 1 UPERBOLOEIDH anhgmènec morfèc b' bˆjmia ta ELLEIYOEIDH-UPERBOLOEIDH èqoun KENTRO SUMMETRIAS kai POLLA EPIPEDA SUMMETRIAS (x, psi, z) ( x, ψ, z) PARABOLOEIDH: x + ψ (α c)z = 0 DEN èqei KENTRO SUMMETRIAS 'Eqei EPIPEDO SUMMETRIAS.

16 H DEUTEROBAJMIA EXISWSH sto QWRO (E) : α 11 x + α ψ + α 33 z + α 1 xψ + α 13 xz + α 3 ψz + α }} 14 x + α 4 z + α 34 z + α } 44 = 0 } b-bˆjmio a-bˆjmio 3 i, j=1 α ijx ij x 1 x x ψ x 3 z α ij = α ji [ + 3 i=1 α i4x i ] + α 44 = 0 b'bˆjmio a'bˆjmio Ekfrˆzoume thn (E) wc ginìmeno pinˆkwn A = α ij, A = A t α 11 α 1 α 13 x x (x, ψ, z) α 1 α α 3 ψ + (α 14, α 4, α 34 ) ψ +α 44 = 0 α 31 α 3 α 33 z z }}}} B = (α 14, α 4, α 34 ) x X = ψ z Γ = α 44 (E) : X t AX + BX + Γ b'bˆjmio a'bˆjmio SUSTHMA SUNTETAGMENWN pou APLOPOIEI thn (E) H (E) anafèretai se èna sôsthma suntetagmènwn Oxψz M(x, ψ, z) (E) = 0}. AnazhtoÔme sôsthma suntetagmènwn O x ψ z } ste h (E) na paðrnei thn aploôsterh morf. ALLAGH SUNTETAGMENWN sto QWRO x Oxψz ψ O x ψ z X = P ψ + H ìpou P : pðnakac allag c bˆshc pou diathreð ta m kh, STROFH (GENIKEUSH) kai H: METAFORA P : GENIKEUSH thc STROFHS ìpou P P t = I dhlad o P eðnai ORJOGWNIOS. APODEIXH x, ψ, z, x, ψ, z x + ψ + z = (x ) + (ψ ) + (z )

x (x, ψ, z)i ψ = X t IX z (x, ψ, z )I x ψ z = Ψ t IΨ 17 Prèpei X t IX = Ψ t IΨ X = P Ψ IsqÔei X t = Ψ t P t Tìte Ψ t P t P Ψ = Ψ t IΨ ψ F ν ν ProkÔptei ìti P P t = I b 11 b 1 b 13 b 11 b 1 b 31 P = b 1 b b 3 b 1 b b 3 = I b 31 b 3 b 33 b 13 b 3 b 33 Oi grammèc eðnai metaxô touc ORJOGWNIA DIANUSMATA Oi st lec eðnai metaxô touc ORJOFWNIA DIANUSMATA Kˆje gramm, kˆje st lh èqoun m koc 1. EpÐshc isqôei det(p ) = 1 det(p ) = 1 det(p ) = 1 Allˆzoume suntetagmènec: X = P Ψ + H Sthn exðswsh (E): X t AX + BX + Γ = 0 antikajistoôme to X kai prokôptei: b'bˆjmio a'bˆjmio P 1 = P t Ψ t (P AP t )Ψ + [(HA + B)P t ]Ψ + (HAH t + BH t + Γ) = 0 }}}}}} P t stajerìc ìroc SHMEIWSH A P AP t B (HA + B)P t Γ (HAH t + BH t + Γ) ERWTHMA: Upˆrqei mða metaforˆ ste sthn exðswsh pou prokôptei na mhn upˆrqei prwtobˆjmioc ìroc } (HA + B)P t = 0 Mìno an upˆrqei H : HA + B = 0 P t ANTISTREYIMOS det(a) 0 èqei lôsh Dhlad prèpei HA = B det(a) = 0 den èqei lôsh

18 An det(a) 0 H = BA 1 PROTASH H E eðnai epifˆneia pou èqei KENTRO SUMMETRIAS an kai mìno an det(a) 0. Tìte to KENTRO eðnai h lôsh tou sust matoc H = BA 1. MELETH twn EPIFANEIWN 1 h PERIPTWSH: det(a) 0 dhlad upˆrqei KENTRO se mia metaforˆ. α 11x + α ψ + α 33ψ + α 1x ψ + α 13x z + α 3ψ z + α 44 = 0 Z t BZ + = 0 ìpou B: summetrikìc kai B = A me det(b) 0 kai Z t BZ : b'bˆjmioc ìroc, : stajerìc ìroc. Prèpei na gðnei ALLAGH BASHS gia na fôgoun oi ìroi x ψ, ψ z, x z Upˆrqei allag bˆshc Ω = P Z ste Ω t (P BP t ) Ω + = 0 }} diag nioc ( ) Dhlad exafanðzontai tautìqrona ta ginìmena UpenjÔmish apì GRAMMIKH II: DIAGWNIOPOIHSH 'Estw M summetrikìc pðnakac pragmatik n suntelest n tìte o M eðnai ìmoioc me ènan diag nio pðnaka pou sthn diag nio upˆrqoun oi idiotimèc pou eðnai PRAGMATIKES λ 1 0 0 0 K 1 0 λ 0 0 MK = λ i R, λ i 0 0 0 0 λ n Epiplèon o K mporeð na epilegeð ste na eðnai ORJOGWNIOS SUMPERASMA An det(a) 0 upˆrqei mða allag suntetagmènwn X = P Ψ + H pou sto nèo sôsthma h (E) ja paðrnei th morf αx + βψ + γz + δ = 0, α, β, γ 0 αx + βψ + γz = δ

19 δ = 0 αx + βψ + γz = 0, α, β, γ 0 KWNOS (pragmatikìc fantastikìc) δ 0 x ( δ ) + ψ ( δ ) + z ( δ ) = 1 α β γ ELLEIYOEIDES UPERBOLOEIDES monìqwno, dðqwno pragmatikì fantastikì anˆloga me ta prìshma twn δ, δ, δ α β γ h PERIPTWSH: det(a) = 0 den upˆrqei KENTRO SUMMETRIAS Upˆrqei prwtobˆjmioc ìroc (Den mporeð na gðnei metaforˆ) MporeÐ na gðnei STROFH (o pðnakac diagwniopoieðtai allˆ upˆrqoun mhdenikˆ sthn diag nio). αx + βψ + γz + δx + εψ + jz + n = 0 kˆpoio apì ta α, β, γ eðnai mhdèn. 'Estw ìti upˆrqei èna mhdenikì p.q. γ = 0 αx + βψ + γz + δx + εψ + jz + n = 0 α, β 0 me katˆllhlh metaforˆ: kai me ˆllh metaforˆ α x + β ψ + jz + n }} = 0 α x + β ψ + j z = 0 ELLEIPTIKOI KULINDROI UPERBOLOKOI KULINDROI an j = 0. ELLEIPTIKO UPERBOLIKO PARABOLOEIDES an j 0. PARADEIGMA x 3 + ψ 4 = 1 z = 0 u(0, 0, 1) x 3 + ψ 4 = 1 KULINDROS.

0 JEMA 1 α) An a, b 0 kai isqôei a + b = a + b na deðxete ìti a, b eðnai suggrammikˆ. APODEIXH: a + b = a + b + a b < a + b, a + b >= a + b + a b < a, b >= a b < a, a > + < b, b > + < a, b >= a + b + a b 1 oc TROPOS: < a, b >= a b cos( a, b) 0 a, b cos( a, b) = 1 a, b suggramikˆ oc TROPOS: ANALUTIKH EKFRASH a = (a 1, a ) b = (b1, b ) a 1 b 1 + a b = (a 1 b a b 1 ) = 0 tìte < a, b >= a 1 b 1 + a b a 1 + a b 1 + b = a 1b 1 + a b + a 1 b 1 a b = ( a 1b 1 + a 1b + a b 1 + a b ) a 1 b = a b 1 0 a, b p.q. b 1 0 a 1 = a = λ a 1 = λb 1 (a 1, a ) = λ(b 1, b ) b 1 b a = λb < a, b > a b ANISOTHTA CAUCHY-SWARTZ a + λ b φ(λ) = a + λ b 0 φ(λ) = 0 a + λ b = 0 a, b suggrammikˆ. β) a, b, c R 3 kai isqôei < a b, c >= 0 tìte ta a, b, c eðnai sunepðpeda. SWSTO LA- JOS. APANTHSH: eðnai SWSTO. APODEIXH (A' TROPOS): < a b, c > = V ( a, b, c) = 0 a, b, c sunepðpeda ˆra den sqhmatðzetai parallhlepðpedo. APODEIXH (B' TROPOS): det a, b, c} = 0 a, b, c grammikˆ exarthmèna. An a, b, c 0 kai λ 1 a + λ b + λ3 c = 0

1 (λ 1, λ, λ 3 ) (0, 0, 0) tìte gia λ 1 0 eðnai a = ( λ λ 1 ) b λ 3 λ 1 ) c a = ρ b + κ c a, b, c sunepðpeda. An a = 0 tìte a = 0 b + 0 c. γ) Sto sun jh q ro jewroôme to epðpedo (Π) : x ψ + z = 0 kai to shmeðo M : OM(1, 1, 1). Na brejoôn shmeða N tou epipèdou (Π) tètoia ste OM ON kai ON = 1. LUSH: 'Estw ON(x, ψ, z) tìte N (Π) kai isqôei (a) x ψ + z = 0 (b) x + ψ + z = 0 (a) x ψ + z = 0, (b) < OM, ON >= x + ψ + z = 0, (c) ON = 1 x + ψ + z = 1. } ( ) ψ = 0 z = x x = z giatð N (Π); (giatð OM ON); tìte (x, ψ, z) = λ(1, 0, 1). () 'Ara N = (x, ψ, z) R 3 (x, ψ, z) = λ(1, 0, 1)}. (c) ON = 1 λ(1, 0, 1) = 1 λ = ±. 'Ara (, 0, ), (, 0, ) Dhlad upˆrqoun shmeða tou epipèdou pou ikanopoioôn tic sunj kec tou erwt matoc. δ) Sto R 3 kai sto Oxψz} jewroôme thn apeikìnish f : (x, ψ) f(x, ψ) = ( ( x + κψ), kai κλ = 3. Na upologistoôn ta κ, λ ste: 4 f(x, ψ) = (x, ψ) x, ψ R (λx + ψ) ), κ, λ R LUSH: f(x, ψ) = 1 4 ( x + κψ) + 1 4 (λx + ψ) = 1 4 [x + 4κ ψ + 4λ + ψ 4κxψ + ψ + 4λxψ] = = (1 + 4λ ) 4 x + (1 + 4κ ) ψ + (λ κ)xψ x, ψ 4

(x, ψ) = x + ψ Prèpei LÔnontac to sôsthma prokôptei ìti (1 + 4λ ) = 1 4 (1 + 4κ ) = 1 4 λ = κ κ = λ = 3 3 κ = λ = giatð κλ = 3 4. JEMA DÐnetai h exðswsh tou R 3 sto sôsthma Oxψz} (Σ) : x + ψ + z 8x + 6z 11 = 0 α) Na apodeiqjeð ìti h (Σ) paristˆnei sfaðra kai na prosdioristeð to kèntro kai h aktðna Kèntro: (4, 0, 3) R = 6. (x 4) 16 + (ψ ) + (z + 3) 9 11 = 0 (x 4) + ψ + (z + 3) 36 = 0 β) DÐnetai to epðpedo (Π) tou q rou (Π) : x ψ + z 5 = 0. (i) Na apodeiqjeð ìti (Π) (Σ) = kôkloc kai na prosdioristeð to kèntro kai h aktðna tou. ArkeÐ na deiqjeð ìti upˆrqei A (Π) : M [(Π) (Σ)] AM = stajerì Tìte sumperaðnoume ìti [(Π) (Σ)] = (C) : kôkloc. An up rqe autì to shmeðo A tìte KA = l (Π) l(, 1, ) (ε) : (eujeða apì K) (Π) x 4 (ε) : = ψ 0 1 = z + 3 'Ara A = (Π) (E). (1) Jètoume t touc Ðsouc lìgouc sthn (1) dhlad x 4 = ψ 0 1 = z + 3 = t opìte: x = t + 4 ψ = t z = t + 3

3 AntikajistoÔme sthn exðswsh tou (Π) : x + ψ + z + 5 = 0 kai prokôptei: (t + 4) ( t) + (t + 3) + 5 = 0 9t = 7 t = 7 9 opìte x = 9, ψ = 7 9, z = 41 9 A(x, ψ, z) = ( 9, 7 9, 41 9 ) KENTRO tou KUKLOU KA = d(k, Π) 1 = ( 4) ψ(0) + ( 3) 5 + 1 + KA = 3 'Ara R = (aktðna sfaðrac) KA R = 36 9 R = 7 'Ara h tom (Π) (Σ) : C kôkloc me K( ), R = 7 (ii) (Σ ) omìkentrh thc (Σ) efaptìmenh sto (Π) K(4, 0, 3) kai R = d(k, Π) = 3. γ) A( 1, 7, 1), B(9, 7, 5). Na brejeð o G.T. twn shmeðwn M tou q rou pou blèpoun to eujôgrammo tm ma me ˆkra ta shmeða A kai B me orj gwnða (dhlad ÂMB = 90 o ). 1 oc TROPOS EPILUSHS: GEWMETRIKOS K MESON tou AB K(4, 0, ) R = 1 AB = 1 1 100 + 8 + 36 = 164 (x 4) + ψ + (z ) = 41 oc TROPOS < MA, MB >= 0. 1 d(p, Π) = Ax 0 + Bψ 0 + Γz 0 + A + B + Γ